


Pavlick-BioCube

Ryan Pavlick¹, Fabian D Schneider¹, Philip A Townsend², John D.J. Clare³, Ting Zheng², Natalie Queally², Adam Chlus¹, Zhiwei Ye², Morgan Dean^{1,4} and Camila Cortez^{1,2}
(1) Jet Propulsion Laboratory, California Institute of Technology (2) University of Wisconsin-Madison (3) University of California, Berkeley, (4) University of Michigan

We are developing an open-source data cube framework, **BioCube**, that integrates six major dimensions of biodiversity that can be measured from space on a common spatiotemporal grid at 1 km resolution.

We plan to address four key science questions using BioCubes covering large parts of California and Wisconsin:

- 1) How are the dimensions of biodiversity related to each other, and what is the predictability of in-situ plant species richness, endemism and phylogenetic diversity from space-based remote sensing data?
- 2) What are the roles of functional, taxonomic, phylogenetic and spectral diversity in predicting the magnitude and stability of ecosystem function at large spatial scales?
- 3) How well do the BioCube remote sensing dimensions predict animal community composition and biodiversity using matrix dissimilarity and macroecological models?
- 4) How do BioCube remote sensing dimensions relate to aspects of deer behavior?